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Outline

• New disclosure avoidance algorithm

• Fewer invariants

• Less publicly available data

• Less consistency among data products
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NEW DISCLOSURE AVOIDANCE ALGORITHM
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• Suppression and swaps • Differential privacy
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• Suppression and swaps

– Top coding for income or 
household size

– Table suppression

– Swapping
• Identify unique HHs in a 

geographic area and swap 
with similar HHs in a 
different geography

– Absolute

• Differential privacy
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• Suppression and swaps

– Top coding for income or 
household size

– Table suppression

– Swapping
• Identify unique HHs in a 

geographic area and swap 
with similar HHs in a 
different geography

– Absolute

• Differential privacy

– Inject noise into statistics

– Magnitude of noise 
depends on policy 
decisions

– Relative

9



HOW IS DIFFERENTIAL PRIVACY 
IMPLEMENTED? 
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Male | Never
Male | Never
Male | Never
Male | Attending
Male | Attending

⫶
Male | Attending
Male | Past

⫶
Male | Past

Female | Never
⫶

Female | Never
Female | Attending

⫶
Female | Attending
Female | Past

⫶
Female | Past

x12

x33

x4

x17

x31

“True” microdata
Sex SexSchool School



Construct cross-tabs from “true” data

School Attendance

Never Attending Past

Male 3 12 33

Female 4 17 31

12

Population = 100



Draw noise from Laplace distribution
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+0
+1-1

-2
+2

+8

spread is determined by 𝝴

Draw one point for 
each cell in cross-tab



Add noise to cross-tab

School Attendance

Never Attending Past

Male 3 – 1 = 2 12 + 0 = 12 33 + 1 = 34

Female 4 + 8 = 12 17 + 2 = 19 31 – 2 = 29
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Sum = 108



POLICY DECISIONS
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Policy decisions

• Global privacy loss budget (𝝴) 

• Fractional allocations

• Invariants and constraints
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Policy decisions

• Global privacy loss budget (𝝴) 

• Fractional allocations

• Invariants and constraints
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Fractional allocations

• Geographic levels

• Queries
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Tract Groups



• Detailed person

– Age * Sex * Hispanic * Race * HHGQ * Citizen

• Voting age * Hispanic * Race * Citizen 

• Detailed housing 

• Hispanic * Race * Size of HH * HH type
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Invariants and Constraints

• Invariants are counts not subject to noise 
injection
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2010 Demonstration Data Product

State – total population

Census block – total housing units

Census block – group quarters count

Census block – group quarters type count
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2010 Demonstration Data Product 2010 Decennial

State – total population Census block – total population

Census block – total housing units Census block – total housing units

Census block – group quarters count Census block – occupied housing units

Census block – group quarters type count Census block – voting age population

Census block – group quarters count

Census block – group quarters type count



Invariants and Constraints

• Invariants are counts not subject to noise 
injection

• Constraints
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Invariants and Constraints

• Invariants are counts not subject to noise 
injection

• Constraints

– Non-negativity

– Consistency
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NOISE INJECTION
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Middle Case Scenario
-County/Tract Group/Tract/BG/Block
-Detailed person or detailed housing



ANALYZING DIFFERENTIALLY 
PRIVATE 2010 CENSUS DATA
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• Results based on talks given at the Workshop 
on 2020 Census Data Products: Data Needs 
and Privacy Considerations

– Hosted by CNStat

– December 11-12, 2019

– https://sites.nationalacademies.org/DBASSE/CNST
AT/DBASSE_196518
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Tract Groups
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LESS PUBLICLY AVAILABLE DATA
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Census 2010 – 2020 Crosswalk
• https://www2.census.gov/programs-surveys/decennial/2020/program-

management/data-product-planning/2010-demonstration-data-
products/2020-census-data-products-planning-crosswalk.xlsx
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Concept Finest 2010 geog
Finest 2020 geog

(proposed)

Race Block Block and TBD

Households Block County

Families Block N/A

Group quarters Block/tract County/state



LESS CONSISTENCY AMONG 
PRODUCTS
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Group 1 products

• Apportionment

• PL94-171

• Demographic and Housing Characteristics (DHC)

– Replaces SF1

• Demographic Profile

• Congressional District DHC
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Group 2

• Detailed race/ethnicity

• American Indian and Alaska Native Summary File

• Person—household joins
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Less consistency in counts

• AI/ANDHC != AI/ANsummary file

• CountyDHC != CountyDetailed race/ethnicity summary   

48



Next steps
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Next steps

• Census modifying its algorithm to try and fix 
issues found in the 2010 demonstration data
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Next steps

• Census modifying its algorithm to try and fix 
issues found in the 2010 demonstration data

• Timeline is short

– I’m not sure Census has time to address all issues 
and create usable data
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Next steps

• Census modifying its algorithm to try and fix 
issues found in the 2010 demonstration data

• Timeline is short

– I’m not sure Census has time to address all issues 
and create usable data

• Need another demonstration dataset
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Resources

• Census Bureau Disclosure avoidance
– https://www.census.gov/about/policies/privacy/statistical_safeguards

/disclosure-avoidance-2020-census.html

• IPUMS Differential Privacy
– https://ipums.org/changes-to-census-bureau-data-products

• New York Times editorial
– https://www.nytimes.com/interactive/2020/02/06/opinion/census-

algorithm-privacy.html
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