
Page 1 of 3

Steps to Automate Data Search

1. Define Search Terms:

o A list of search terms is created and stored in a .txt file.

2. Locate or Create Excel List:

o Shipping Lists https://www.fdlp.gov/collection-tools/shipping-lists

o New Electronic Titles https://catalog.gpo.gov/F/?func=file&file_name=find-

net&local_base=NEWTITLE

3. Retrieve Matching Entries:

o Python searches through an Excel file, identifying rows that match the terms.

4. Organize Results:

o Matching entries are extracted and placed into a new Excel file, streamlining the review process.

Ingredients Needed:

• Criteria/Terms/Keywords: Search terms stored in a .txt file.

• Excel File of Records: Spreadsheet containing the data to be searched.

• Python Tool: Python IDE, Pandas and Openpyxl libraries.

Tools & Technologies Used:

1. PyCharm (or any Python IDE):

o Used for writing and running the Python code.

2. Pandas Library:

o A Python module for data manipulation and analysis. Essential for reading and writing Excel

files.

3. Openpyxl Module:

o Required for Pandas to handle Excel file operations.

Setup Instructions:

1. Run PyCharm in Administrator Mode:

o Right-click the PyCharm icon and select "Run as Administrator."

2. Organize Files:

o Ensure all necessary files (code, Excel, search terms) are in the same folder. PyCharm typically

generates a folder for the project.

3. File Path Adjustments:

o Modify the file path to access the Excel file correctly by using raw strings (e.g., r"file_path").

4. Search Term Input:

o Input search terms using a .txt file. Ensure no extra spaces or lines are present.

https://www.fdlp.gov/collection-tools/shipping-lists
https://catalog.gpo.gov/F/?func=file&file_name=find-net&local_base=NEWTITLE
https://catalog.gpo.gov/F/?func=file&file_name=find-net&local_base=NEWTITLE

Page 2 of 3

Coding Iteration:

• Efficiency Example: Automating searches with a .txt file is faster than manual input.

• Refinement: Several iterations were required to refine a search based on unique depository selections.

• Initial Issue: Early attempts matched partial numbers (e.g., "0050-E-17" was matched because of

"0050-E"). Code was modified to ensure exact matches only.

Pro Tip:

• For Search Criteria use Notepad, avoid spaces at the top of the .txt file. Search terms on the same line

will be treated as a single term.

Code in Text format

import pandas as pd

Load the Excel file

file_path = r"Insert your file path here"

df = pd.read_excel(file_path)

Load the search terms from a text file

with open('search_terms.txt', 'r') as file:

 search_terms = [line.strip() for line in file if line.strip()]

Create a set of search terms for exact matching

search_terms_set = set(search_terms)

Function to check for exact matches

def exact_match(row):

 # Convert row to string and split into individual terms

 row_values = row.astype(str).str.strip().unique()

 # Check for exact matches against the search terms

 return any(value in search_terms_set for value in row_values)

Search across all columns for rows containing exact matches

matching_rows = df[df.apply(exact_match, axis=1)]

Output the matching rows

print(matching_rows)

Optionally, save the matching rows to a new Excel file

matching_rows.to_excel('filtered_results.xlsx', index=False)

Page 3 of 3

